
Software Engineering

 2 - 1

SOFTWARE PROJECT
MANAGEMENT

l Overview l Software Project Estimation

l Software Project Metrics l Software Project Planning

Objectives of Module 2

l Present and discuss the basic concepts of Software Project Management:

m Software Metrics

m Software Cost and Timing Estimation

m Software Project Planning

Software Engineering

 2 - 2

TOPICS

Overview

Metrics

Estimation

Planning

Software Engineering

 2 - 3

Overview

To successfully manage software development, the project leader must
determine:

1. Scope of work to be done

2. Risks to be incurred

3. Resources that will be required

4. Tasks to be accomplished

5. Effort (cost) that will be expended

6. Schedule to be followed

Software project management begins before the technical work starts.

Software project management ends when the software is retired.

l Many factors, such as risks, resources, effort (cost), and schedule are

difficult to determine in advance without information from previous projects.

l In this vein, there is an emphasis on collecting software metrics and then

using those metrics to make estimates which are reasonably close.

l Industry has traditionally not been good at collecting software metrics on its

projects because:

m Collecting metrics costs money and takes time, both of which have a

direct impact on a project, particularly if they were not planned for in

advance

m Collecting metrics can be tedious work -- something that many software

practitioners tend to avoid

Software Engineering

 2 - 4

Overview, ContinuedSet Objectives and
Scope

Identify Metrics and
Measurement

Estimate Time, Man-
power, Materials

Perform Risk
Analysis

Conduct, Track, and
Control the Process

The Planning Process

l Software in industry is usually developed under the following situations:

m As part of a product

m In support of a product

m As an activity of research and development

l In the first two cases, budgets are allocated based on the cost estimates. If

software is developed for a customer, the award of a contract may be on a firm,

fixed-price basis or on a cost-plus or cost-reimbursable basis.

Software Engineering

 2 - 5

SOFTWARE METRICS
l Measuring Software

l Why Measure Software?

l Two Types of Measurements

l Categories of Metrics

l Size-Oriented Metrics

l Function Points

l Feature Points

l Function-Oriented Metrics

l Measuring Software Quality

l Relationship of LOC to FP

l Use of Productivity Data

l Integrating Metrics into the Software Engineering Process

l Collecting Software Metrics

Software Engineering

 2 - 6

Measuring Software
l Objectively measuring software is difficult.

m Most projects use only "lines of code" (LOC) for
metrics.

m Much disagreement exists on what and how much
to measure.

but

l Accurately measuring software is vitally important to
tracking and controlling software development.

LOC Statements

Same Project
Different Metrics

Software Engineering

 2 - 7

Why Measure Software?

To --

1. identify quality of the software product

2. assess productivity of the software
developers

3. assess benefits of using development
processes and tools

4. form a baseline for estimation

5. justify requests for tools and training

Software Engineering

 2 - 8

Two Types of Measurements

l Direct

-- cost

-- LOC

-- execution speed

-- binary code size

-- memory used

S easy to make

l Indirect

-- functionality

-- quality

-- "-ilities"

S not easy to make

Software Engineering

 2 - 9

Categories of Metrics

Size-Oriented

Function-Oriented

Human-Oriented

Productivity Quality Technical

Software Engineering

 2 - 10

Size-Oriented Metrics

Let KLOC = "thousand lines of code"

Then we can define

l productivity = KLOC / person-months

l quality = defects in code / KLOC

l cost = dollars / KLOC

l documentation = pages of documents / KLOC

Efforts and costs include all elements of software
development (analysis, design, code, test, etc.).

Software Engineering

 2 - 11

Size-Oriented Metrics - Examples

Project Person- Cost KLOC Pages of Errors

Months Doc

A 24 $168,000 12.1 365 29

B 62 $440,000 27.2 1224 86

C 43 $314,000 20.2 1050 64

Project Productivity Quality Cost Documents

(KLOC/p-months) (errors/KLOC) ($/LOC) (pages/KLOC)

A 0.504 2.40 $13.88 30.17

B 0.439 3.55 $16.18 45.00

C 0.470 3.67 $15.54 51.98

Software Engineering

 2 - 12

Problems with Size-Oriented Metrics

l Definition of "lines of code"

m Programming language dependent

m Penalize well-designed shorter programs

m Cannot easily accommodate non-procedural
languages

m Difficult to assess LOC before a program is
written

l Only known errors can be counted

l Types, skill levels, and productivity of personnel
varies

Software Engineering

 2 - 13

Function Points - Fi Values

0 1 2 3 4

No
Influence

Incidental Moderate Average Significant

 1. Does the system require reliable backup? 8. Are the master files updated on-line?

 2. Are data communications required? 9. Are the inputs, outputs, files, or inquiries complex?

 3. Are there distributed processing functions? 10. Is the internal processing complex?

 4. Is performance critical? 11. Is the code designed to be reusable?

 5. Will the system run in an existing environment? 12. Are conversion and installation included in design?

 6. Does the system require on-line data entry? 13. Is the system designed for multiple installations in

 7. Does the on-line data entry require the input different organizations?

transaction to be built over multiple screens 14. Is the application designed to facilitate change and

or operations? ease of use?

Software Engineering

 2 - 14

Function Points - Computation

Weighting Factor

Measurement Parameter Count Simple Average Complex Product

Number of user inputs x 3 4 6 =

Number of user outputs x 4 5 7 =

Number of user inquiries x 3 4 6 =

Number of files x 7 10 15 =

Number of external interfaces x 5 7 10 =

Count - Total

FP count total= − + ∑(. .)0 65 0 01 F
i

Software Engineering

 2 - 15

Feature Points

Function Point Extensions
for Technical Software

l Function points were originally designed for business

information systems applications.

l Extensions called feature points apply to technical

software applications.

l Algorithms are a bounded computational problem that is

included within a specific computer program.

Software Engineering

 2 - 16

Feature Points - Computation

Measurement Parameter Count Weight Product

Number of user inputs x 4 =

Number of user outputs x 5 =

Number of user inquiries x 4 =

Number of files x 7 =

Number of external interfaces x 7 =

Algorithms x 3 =

Count - Total

FP count total= - + Â(. .)0 65 0 01 Fi

Software Engineering

 2 - 17

Problems with Function Points
and Feature Points

1. These metrics are based on subjective data.

2. Parameters can be difficult to obtain after-the-
fact.

3. Function and Feature Points have no direct
physical meaning.

Software Engineering

 2 - 18

Function-Oriented Metrics

l Focus is on "functionality" or "utility"

l Both Function Points and Feature Points support the

derivation of potentially useful data for the comparison
of one project to another:

m Productivity = FP / person-month

m Quality = defects / FP

m Cost = $ / FP

m Documentation = pages / FP

Software Engineering

 2 - 19

Measuring Software Quality

Before Delivery

l Program complexity

l Effective modularity

l Program size

After Delivery (most widely used)

l Number of defects uncovered

in the field

l Maintainability of the system

Software Engineering

 2 - 20

“After Delivery” Quality Metrics

l Correctness - defects/KLOC or defects/FP over a

one-year period

l Maintainability - mean-time-to-change (MTTC),
which is the time required to:

m analyze the change request,

m design a modification to the software,

m implement the change,

m test the changed software and the system as a

whole, and

m distribute the changed system to the users

Software Engineering

 2 - 21

“After Delivery” Quality Metrics,
Continued

l Integrity - based on threats and security

m Threat - probability that a specific attack will take place within a

given period of time

m Security - probability that the attack of a specific type will be repelled

l Useability - based on several perceptions of the users:

m skill required to use the program

m time required to learn the use of the program

m the increase in productivity from using the program

m the user's attitude towards the program

Integrity threat security
allthreats

= - -Â (())1 1

Software Engineering

 2 - 22

Relationship of LOC to FP
l The relationship of lines of code to feature points is a function

of the programming language used and the quality of the
design.

l Rough estimates of the number of lines of code to create on
feature point are:

Language LOC/FP

Assembly 300

COBOL 100

FORTRAN 100

Pascal 90

Ada 70

Object-Oriented Languages 30

Fourth Generation Languages 20

Automatic Code Generators 15

Software Engineering

 2 - 23

Use of Software Productivity Data

l Do not use LOC/person-month or FP/person-month to:

m Compare one group of developers to another

m Rate the performance of an individual

l Many factors affect productivity:

Approximate % Variation

Factor in Productivity

People (number, experience) 90%

Problem (complexity, number of changes) 40%

Process (language, CASE) 50%

Product (reliability, environment) 140%

Resources (CASE, hardware, software) 40%

Software Engineering

 2 - 24

Integrating Metrics into the
Software Engineering Process

l A historical baseline of metrics data is needed:

mCompany, department, or unit should be

identified in the scope of this data.

mResistance to data collection should be

expected in many corporate cultures.

l At least three years of accurate, standardized
metric data collection is needed to produce

accurate planning estimates.

Software Engineering

 2 - 25

Collecting Software Metrics
l The process of collecting and using software metrics includes the

following steps:

1. data collection

2. metrics computation

3. data evaluation

l The following slides show a spreadsheet model for the collection
and computation of historical software baseline data.

Software
Engineering

Process

Software

Managers

Practitioners

Data
Collection

Metrics
Computation

Data
Evaluation

Software Engineering

 2 - 26

Spreadsheet Data Collection Model
Description Units Sample Data

l Cost Data Input

Labor cost $/person-month $7,744

Labor year hours/year 1560

l Data for Metrics Computation

Release type alphanumeric maintenance

Number of staff members people 3

Effort person-hours 4800

Elapsed time to complete hours 2000

Source code KLOC

Newly developed 11.5

Modified 0.4

Reused 0.8

Delivered 33.4

Software Engineering

 2 - 27

Spreadsheet Data Collection Model
Description Units Sample Data

l Data for Metrics Computation, Continued

Documentation pages

Technical 265

User 122

Number of errors to date numeric

Critical errors 0

Level 1 errors 12

Level 2 errors 14

Documentation errors 40

Maintenance to date person-hours

Modifications 3550

Error correction 1970

Software Engineering

 2 - 28

Spreadsheet Data Collection Model
Description Units Sample Data

l Project Data % of total

Analysis and specification 18%

Design 20%

Coding 23%

Testing 25%

Other - Describe 14%

Software Engineering

 2 - 29

Spreadsheet Data Collection Model
Description Units Sample Data

l Function-Oriented Data

Information Domain

1. No. of user inputs inputs 24

2. No. of user outputs outputs 46

3. No. of user inquiries inquiries 8

4. No. of files files 4

5. No. of ext. interfaces interfaces 2

Weights

1. No. of user inputs 3, 4, 6 4

2. No. of user outputs 4, 5, 7 4

3. No. of user inquiries 3, 4, 6 6

4. No. of files 7, 10, 15 10

5. No. of ext. interfaces 5, 7, 10 5

Software Engineering

 2 - 30

Spreadsheet Data Collection Model
Description Units Sample Data

l Function-Oriented Data, Continued

Processing Complexity Factors 0-5

 1. backup and recovery required 4

 2. data communication required 1

 3. distributed processing function 0

 4. performance critical 3

 5. heavily utilized operating environment 3

 6. online data entry 5

 7. input transaction with multiple screens 4

 8. master files updated online 4

 9. input, output, files, queries complex 3

10. internal processing complex 3

11. code designed to be reusable 2

12. conversion/installation included in design 2

13. system design for multiple installation 4

14. maintainability/ease of use 5

Software Engineering

 2 - 31

Spreadsheet Data Collection Model
Description Units Sample Data

l Size-Oriented Metrics

Productivity and Cost

Output KLOC/p-month 0.905

Cost - all code $/KLOC $22,514

Cost - exclude reuse $/KLOC $24,028

Elapsed time months/KLOC 1.0

Documentation pages/KLOC 30

Documentation pages/p-month 10

Documentation $/page $739

Quality

Defects errors/KLOC 2.0

Cost of errors $/error $376

Software Engineering

 2 - 32

Spreadsheet Data Collection Model
Description Units Sample Data

l Function-Oriented Metrics

Productivity and Cost

Output FP/p-month 378

Cost - all code $/FP $700

Elapsed time FP/month 31.4

Documentation pages/FP 0.9

Quality

Defects errors/FP 0.064

Software Engineering

 2 - 33

SOFTWARE PROJECT ESTIMATION

l Overview

l Resources

l Decomposition Techniques

l Using LOC or FP to Estimate Effort

l Effort Estimation by Function

l Effort Estimation by Task

l Empirical Estimation Models

l COCOMO

l Putman Estimation Model

Software Engineering

 2 - 34

Overview

Estimation of:

l resources

l costs

l schedules

Requires:

l experience

l historical information

l quantitative measures of qualitative data

Software Engineering

 2 - 35

Overview, Continued
Degree of structure,
definition, variability

Size of effortComplexity
based on
past efforts

Low-risk domain
Estimation
can be Risky

Software Engineering

 2 - 36

Resources

1. Statement of software scope must be

bounded

2. Software scope describes:

3 function

3 performance

3 constraints

3 interfaces

3 reliability

evaluated together

Planning Task 1:
 Software Scope

Software Engineering

 2 - 37

Resources, Continued

Planning Task 2:
 Estimation of
 Needed
 Resources

People

Hardware/software
 tools

Specify:

l Required skills

l Availability

l Duration of tasks

l Start date

Specify:

l Description

l Availability

l Duration of use

l Delivery date

Software Engineering

 2 - 38

Resources, Continued

CASE
Database

Maintenance Tools

Prototyping and
Simulation Tools

Integration and
Testing Tools

Programming Tools

Analysis and
Design Tools

Support Tools

Project Management

Framework Tools

Business Systems
Planning

CASE - Computer-Aided Software Engineering

Software Engineering

 2 - 39

Resources, Continued

Two rules:

1. If existing software meets requirements, then

acquire and use it!

2. If existing software can meet requirements with some
modification, then

be careful!

The cost of modification can exceed the cost of
new development!

Reuse - A Resource

Software Engineering

 2 - 40

Decomposition Techniques

l LOC and FP Estimation

l Effort Estimation

Software Engineering

 2 - 41

Decomposition Techniques, Continued

The idea is that the person planning the software project:

l creates a bounded statement of the scope of the software

l decomposes the scope into smaller subfunctions

l estimates LOC or FP for each subfunction

l applies baseline productivity metrics (e.g., LOC/person-month) to

LOC or FP estimates to produce a cost or effort estimate for each

subfunction

l combines estimates for each subfunction to derive estimates for

the entire project

LOC and FP Estimation

Software Engineering

 2 - 42

Decomposition Techniques, Continued

l FP estimation techniques require less detail than LOC

l LOC is estimate directly while FP is estimated indirectly

Differences Between LOC and FP

Software Engineering

 2 - 43

Using LOC or FP to Estimate Effort

1. Estimate LOC or FP values for each subfunction

l Use historical data (or intuition, if necessary)

l Three estimates: optimistic (o), most likely (m), and pessimistic (b)

2. Calculate expected value for each subfunction

3. Apply productivity data to get effort to be expended; two ways:

1. Total expected LOC or FP for all subfunctions and divide this by the
expected LOC or FP completed per person-month (estimated from
past projects); example:

Effort = 310 expected FP for project/5.5 expected FP per person-month

 = 56 person-months

2. Multiply each subfunction LOC or FP by the adjusted productivity
value (based on the estimated complexity of the function) and sum
the results for all subfunctions in the project

E
a m b

=
+ +4

6

Software Engineering

 2 - 44

Effort Estimation by Function

Function Optimistic Most Likely Pessimistic Expected $/Line Line/Month Cost Months

User interface control 1800 2400 2650 2,340 $14 315 $ 32,760 7.4

2-D geometric analysis 4100 5200 7400 5,380 $20 220 $107,600 24.4

3-D geometric analysis 4600 6900 8600 6,800 $20 220 $136,000 30.9

Data structure mgmt 2950 3400 3600 3,350 $18 240 $ 60,300 13.9

Graphics display 4050 4900 6200 4,950 $22 200 $108,900 24.7

Peripheral control 2000 2100 2450 2,140 $28 140 $ 59,920 15.2

Design analysis 6600 8500 9800 8,400 $18 300 $151,200 28.0

Estimated Effort 33,360 $656,680 144.5

CAD Program Example

Estimated Cost: $ 656,680
Estimated Effort: 144.5 person-months

Software Engineering

 2 - 45

Effort Estimation by Task

CAD Program Example

Function RA Design Code Test Total

User interface control 1.0 2.0 0.5 3.5 7.0

2-D geometric analysis 2.0 10.0 4.5 9.5 26.0

3-D geometric analysis 2.5 12.0 6.0 11.0 31.5

Data structure mgmt 2.0 6.0 3.0 4.0 15.0

Graphics display 1.5 11.0 4.0 10.5 27.0

Peripheral control 1.5 6.0 3.5 5.0 16.0

Design analysis 4.0 14.0 5.0 7.0 30.0

Total 14.5 61.0 26.5 50.5 152.5

Rate ($) 5200 4800 4250 4500

Cost ($) 75,400 292,800 112,625 227,250 708,075

Estimated Cost: $ 708,075
Estimated Effort: 152.5 person-months

Software Engineering

 2 - 46

Empirical Estimation Models
l Static single-variable model (example: COCOMO)

where

x is the estimated characteristic (LOC, FP, effort, etc.)

c and d are constants derived from data collected from past projects

l Static multivariable model

where

x, y, ... and c, d, ... are as above

l Dynamic multivariable model

Project resource requirements are determined over a series of time steps

l Theoretical (example: Putman Estimation Model)

Uses equations derived from hypothesized expenditure curves

Resource = cx
d

Resource = + +cx dy ...

Software Engineering

 2 - 47

COCOMO

l Involves basic, intermediate, and advanced models

l Basic model:

a(b), b(b), c(b), and d(b) are determined from the table:

Software Project a(b) b(b) c(b) d(b)

Organic 2.4 1.05 2.5 0.38

Semidetached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Effort person months= -a b KLOC
b b

()
()

Development_Tim monthse c b Effort
d b

= () ()

Software Engineering

 2 - 48

COCOMO, Continued

Example of COCOMO basic model on the CAD program:

Effort = 3.0 (LOC) ^ 1.12

 = 3.0 (33.3) ^ 1.12

 = 152 person-months

Development Time = 2.5 (Effort) ^ 0.35

 = 2.5 (152) ^ 0.35

 = 14.5 months

Thus, estimated number of people N is:

N = Effort / Development Time

 = 152 / 14.5

 = 11 people

Software Engineering

 2 - 49

Putman Estimation Model
l Data is derived from large projects

l Model is applicable to smaller projects as well

l The distribution of effort is described by the Rayleigh-Norden curve

System
Definition

Functional
Spec, design

Design
and coding

Test and
validation

InstallationMan-
power

Time

Software Engineering

 2 - 50

SOFTWARE PROJECT PLANNING
l What Software Project Planning Involves

l Risk Analysis

l Risk Management

l Risk Monitoring - Project Tracking

l Software Project Scheduling

l Typical Task Network

l Approaches to Project Tracking

l Software Acquisition

l Software Acquisition Decision Tree

l Software Re-Engineering

l Organizational Planning

l Enhancements to a Good Organization

l The Software Project Plan (SPP)

Software Engineering

 2 - 51

What Software Project Planning
Involves

1. Estimation

2. Risk Analysis

3. Scheduling

4. Acquisition Decision Making

5. Re-Engineering

6. Organizational Planning

Before starting a development project, we must:

1. Assess the risks involved

2. Develop a strategy for attacking the problem

3. Establish a mechanism for assessing the program

4. Organize people who will be building the project

Software Engineering

 2 - 52

Risk Analysis

Project
Schedule
Overrun

Project Cost Overrun

Referent Point (Cost/Time Value)
Project Termination Will Occur

Software Engineering

 2 - 53

Risk Management
l Create risk management and monitoring plan

l For each risk triplet, define the risk management steps

l Risk management incurs additional project cost

l For larger projects, there may be 30-40 risks identified

Example

Assume:

Risk = High staff turnover

Likelihood of occurrence = 70%

Impact = Increase project time by 15%, project cost by 12%

Risk Management steps may be:

1. Identify high turnover causes

2. Reduce causes before project starts

3. Develop techniques to assure work continuity in light of turnover

Software Engineering

 2 - 54

Risk Monitoring - Project Tracking

1. Determine if predicted risk occurs

2. Properly apply risk aversion steps

3. Collect info for future risk analysis

Software Engineering

 2 - 55

Software Project Scheduling

l People-work relationships

l Task definition and parallelism

l Effort distribution

l Scheduling methods

l An example

Software Engineering

 2 - 56

Software Project Scheduling

People-Work Relationships
l Adding people to a project when behind schedule is

counterproductive (adding people to a late project makes it later)

l Using fewer people over a longer period of time is more

beneficial than lots of people for a shorter period of time

l Use of small, tightly-knit teams is productive

l Inspire creativity and self-motivation within the structure of the

project

Software Engineering

 2 - 57

Software Project Scheduling

Task Definition and Parallelism

analysis

R R

W W TCD

IT VTA D

TP TPr R

l
l
l

Legend:

A: Analysis and specification

R: Review

D: Design

W: Walkthrough

C: Coding

T: Test

TP: Test planning

TPr: Test procedure

IT: Integration test

VT: Validation test

Software Engineering

 2 - 58

Software Project Scheduling

Task Definition and Parallelism
Initial Sequential Events

Milestone 1 Occurs After --

l System analysis and specification

l System requirements review

Milestone 2 Occurs After --

l System architecture and data design

l System preliminary design review

Software Engineering

 2 - 59

Software Project Scheduling

Task Definition and Parallelism

Parallel Events for Each Subfunction

Milestone P1 Occurs After --

l Procedural design

l Design walkthrough

Milestone P2 Occurs After --

l Coding

l Code walkthrough

Milestone P3 Occurs After --

l Unit testing

Software Engineering

 2 - 60

Software Project Scheduling

Task Definition and Parallelism

System Testing Activities Can Be Performed In

Parallel

Testing Milestone (After Unit Testing) --

l System test planning

l System test procedure

l System test review

Software Engineering

 2 - 61

Software Project Scheduling

Task Definition and Parallelism

Integration Test Milestone - completed after
system is assembled

Validation Test Milestone - completed last

Software Engineering

 2 - 62

Software Project Scheduling

Effort Distribution

Analysis
and
Design
(40-50%)

Testing
and
Debugging
(30-40%)

Coding
(15-20%)

Software Engineering

 2 - 63

Software Project Scheduling

Scheduling Methods
l PERT - Program Evaluation and Review Technique

l CPM - Critical Path Method

PERT and CPM are:

l Usually presented pictorially

l Quantitative tools for the planner to determine:

mCritical path

mMost likely time estimates

mBoundary times (earliest task start time, latest

task start time, earliest task finish time, latest

task finish time, total float time)

Software Engineering

 2 - 64

Typical Task Network

Analysis
activities
complete

Perform
Data
Design

Begin
arch.
design

Design
interface

Integrate
program
arch.

Review
program
structure

Develop
test plan
and sched

Review
test
plan

Design
test
procedures

0 5

3

4

2 3

3 1 10

4/24/90 4/25/90

5/2/90

5/2/90

5/8/90 5/15/90

4/25/90 4/30/90 5/1/90

Software Engineering

 2 - 65

Approaches to Project Tracking

l Conducting periodic project status meetings in which each team
member reports progress and problems

l Evaluating the results of all reviews conducted throughout the
engineering process

l Determining whether formal project milestones have been
accomplished by the scheduled date

l Comparing the actual start date to the planned start date for each
task

l Meeting informally with software engineers to obtain their
subjective assessments of the progress to date and problems on
the horizon

Software Engineering

 2 - 66

Software Acquisition

l Make or buy?

m Who will use?

m Buy and modify?

m Contact outside contractor to build?

l Decision based on:

m Reduced cost

m Earlier delivery date

m Not enough or properly skilled people to develop

m Better support outside

Software Engineering

 2 - 67

Software Acqusition Decision Tree
Approach Cost

Build Simple $380,000

Difficult $450,000

Reuse Minor changes $275,000

Major changes Simple $310,000

Complex $490,000

Buy Minor changes $210,000

Major changes $400,000

Contract Without changes $350,000

With changes $500,000

Software Engineering

 2 - 68

Software Re-Engineering

l For often-used programs, build a controlled
database of components for all to use.

l Include documents, source code, user's guide,
maintenance guide, test procedures and data,
and a history of use with the components.

l Software re-engineering may be enhanced by
object-oriented design and implementation.

Software Engineering

 2 - 69

Organizational Planning
l There are lots of human organizational structures for software

development

l Possibilities - consider N people working for K years on M different
functional tasks

Level of

Approach Interaction Coordination

1 Assign N people to M tasks Individual Project Mgr

 (M > N)

2 Assign N people to M tasks Teams Project Mgr,

 (M < N) Team Leader

3 Assign N people to T teams, Formal Project Mgr,

 each team resp. for 1 or Teams Team Leader

 more tasks

Software Engineering

 2 - 70

Enhancements to a Good Organization

l The Chief Programmer Team

l The Software Librarian

l Egoless programming with a team environment

Software Engineering

 2 - 71

The Software Project Plan (SPP)

A brief document which describes --

l The scope of the project

l The resources to be used

l Risks and risk avoidance techniques

l Cost and schedule

l Overall approach to software development

Management, technical staff, and customer are the
primary reads of the SPP.

The SPP provides a starting point for the rest of the
project.

